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Abstract

Let G be a simple graph. Let ∆(G) and χ′(G) be the maximum degree and the

chromatic index of G, respectively. We call G overfull if |E(G)|/⌊|V (G)|/2⌋ > ∆(G),

and critical if χ′(H) < χ′(G) for every proper subgraph H of G. Clearly, if G is

overfull then χ′(G) = ∆(G) + 1. The core of G, denoted by G∆, is the subgraph of G

induced by all its maximum degree vertices. We believe that utilizing the core degree

condition could be considered as an approach to attack the overfull conjecture. Along
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†This author was supported in part by NSF grant DMS-2246292.
‡This author was supported in part by NSF grant DMS-2153938.

1



this direction, we in this paper show that for any integer k ≥ 2, if G is critical with

∆(G) ≥ 2
3n+ 3k

2 and δ(G∆) ≤ k, then G is overfull.

MSC (2010): Primary 05C15

Keywords: Overfull conjecture, Vizing fan, Extended Vizing fan Shifting.

1 Introduction

We will mainly follow the notation from [9]. Graphs in this paper are simple, i.e., finite,

undirected, without loops or multiple edges. Let G be a graph and let [k] = {i | 1 ≤
i ≤ k and i ∈ Z} for a nonnegative integer k. A k-edge-coloring of G is a mapping φ:

E(G) → [k] that assigns to every edge e of G a color φ(e) ∈ [k] such that no two adjacent

edges receive the same color. Denote by Ck(G) the set of all k-edge-colorings of G. The

chromatic index χ′(G) is the least integer k ≥ 0 such that Ck(G) ̸= ∅. Denote by δ(G) and

∆(G) the minimum and maximum degree of G, respectively. In 1960’s, Vizing [12] and,

independently, Gupta [6] proved that ∆(G) ≤ χ′(G) ≤ ∆(G) + 1. This leads to a natural

classification of graphs. Following Fiorini and Wilson [4], we say a graph G is of class 1 if

χ′(G) = ∆(G) and of class 2 if χ′(G) = ∆(G)+1. Holyer [8] showed that it is NP-complete

to determine whether an arbitrary graph is of class 1. The problem of deciding which graphs

are of class one, and which are of class two, is known as the Classification Problem [4, 9].

A graph G is critical if χ′(H) < χ′(G) for every proper subgraphH ofG. In investigating

the Classification Problem, critical graphs are of particular interest. A critical class 2

graph is called ∆-critical if ∆(G) = ∆. An edge e ∈ E(G) is called a critical edge if

χ′(G − e) < χ′(G). Clearly, if G is critical, then every edge of G is a critical edge. For

convenience, we denote |V (G)| by n throughout this paper. Since every matching of G has at

most ⌊n/2⌋ edges, χ′(G) ≥ |E(G)|/⌊n/2⌋. A graph G is overfull if |E(G)|/⌊n/2⌋ > ∆(G).

In 1986, Chetwynd and Hilton [3] conjectured that if G is a class 2 critical graph with

∆(G) > n
3 , then G is overfull. This conjecture is known as the Overfull Conjecture.

The core of a graph G, denoted by G∆, is the subgraph induced by all its maximum

degree vertices. Vizing [12] proved that if G∆ has at most two vertices then G is class 1.

Fournier [5] generalized Vizing’s result by showing that if G∆ is acyclic then G is class 1.

Thus a necessary condition for a graph to be class 2 is to have a core that contains cycles.

A long-standing conjecture of Hilton and Zhao [7] claims that for a connected class 2 graph

G with ∆ ≥ 4, if ∆(G∆) ≤ 2, then G is overfull. This conjecture was recently confirmed

by the authors [1]. Another paper of Cao, Chen, and Shan [2] extended the result above

by changing the maximum core degree condition to a minimum core degree condition, and

showed that for any critical class 2 graph G, if δ(G∆) ≤ 2 and ∆(G) > n/2 + 1, then G is

overfull.
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Along this direction, we prove the following result and verify the overfull conjecture for

critical graphs with a more general minimum core degree condition, and we hope to use

similar ideas to attack the overfull conjecture in the future. For example, if we can improve

the coefficient of k in Theorem 1.1 from 3/2 to 1/12, then the overfull conjecture holds for

all graphs with maximum degree ∆ ≥ 3n/4.

Theorem 1.1. Let k ≥ 2 be a positive integer and G be a ∆-critical graph of order n. If

∆ ≥ 2
3n+ 3k

2 and δ(G∆) ≤ k, then G is overfull.

2 Preliminaries

This section is divided into two subsections. In the first subsection we introduce some basic

notation and terminologies. In the second subsection we introduce the traditional Vizing

fan and generalize it to a larger structure.

2.1 Basic notation and terminologies

Let G be a graph with maximum degree ∆, let e ∈ E(G) be a critical edge, and let

φ ∈ C∆(G− e). For a vertex v ∈ V (G), define the two color sets

φ(v) = {φ(f) : f ̸= e is incident to v} and φ(v) = [∆] \ φ(v).

We call φ(v) the set of colors present at v and φ(v) the set of colors missing at v. If

|φ(v)| = 1, we will also use φ(v) to denote the color missing at v. Let N(v) be the collection

of all the neighbors of v, N<∆(v) be the collection of neighbors of v with degree less than

∆, and N∆(v) be the collection of neighbors of v with degree exactly ∆.

For a vertex set X ⊆ V (G), define φ(X) =
⋃

v∈X φ(v) to be the set of missing colors of

X. The set X is called elementary w.r.t. φ or simply called elementary if φ(u) ∩ φ(v) = ∅
for every two distinct vertices u, v ∈ X. In the rest of this paper, we may not always

mention the coloring φ if it is clearly understood.

For a color α, the edge set Eα = {e ∈ E(G) |φ(e) = α} is called a color class. Clearly,

Eα is a matching of G (possibly empty). For two distinct colors α, β, the subgraph of G

induced by Eα ∪ Eβ is a union of disjoint paths and even cycles, which are referred to as

(α, β)-chains of G w.r.t. φ. For a vertex v, let Cv(α, β, φ) denote the unique (α, β)-chain

containing v. If Cv(α, β, φ) is a path, we just write it as Pv(α, β, φ). The latter is commonly

used when we know that |φ(v) ∩ {α, β}| = 1. If we interchange the colors α and β on an

(α, β)-chain C of G, we briefly say that the new coloring is obtained from φ by an (α, β)-

swap on C, and we write it as φ/C. This operation is called a Kempe change. If α ∈ φ(v),
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by doing operation α → β at v we mean the Kempe change φ/Pv(α, β, φ). Note that

Pv(α, β, φ) could be empty when α, β ∈ φ(v) and α → β at v does nothing in this case. We

say two vertices x and y are (α, β)-linked if they belong to the same (α, β)-chain. Moreover,

when x = y, for convenience we still say x and y are (α, β)-linked even if α, β ∈ φ(x).

2.2 Linear Sequence, Shifting, and Extended Vizing fan

The fan argument was introduced by Vizing [10, 11] in his proof of the classic results on

the upper bounds for chromatic indices. Let G be a class 2 graph with maximum degree

∆, e = rs be a critical edge of G, and let φ ∈ C∆(G − e). For an integer p ≥ 0, a

sequence F = (r, e0, s0, e1, s1, . . . , ep, sp) alternating between distinct vertices and edges is

called a Vizing fan at r with respect to e and φ if s0 = s, e0 = e and for each i ∈ [p],

the edge ei = rsi satisfies φ(ei) ∈ φ(sh) for some 0 ≤ h ≤ i − 1. For the purpose of

generalization in this paper, we include the vertex r in F comparing to the definition of a

Vizing fan in the book [9]. Let q be a nonnegative integer. A linear sequence at r from

s0 to sq in G, denoted by L = (r, e0, s0, e1, s1, . . . , eq, sq), is a sequence of distinct vertices

and edges such that φ(ei) ∈ φ(si−1) for i ∈ [q]. Denote by V (L) and E(L) respectively

the set of vertices and edges contained in L. A shifting from si to sj in the linear sequence

L = (r, e0, s0, e1, s1, . . . , eq, sq) is an operation that replaces the current color of et by the

color of et+1 for each i ≤ t ≤ j− 1 with 0 ≤ i < j ≤ q. Note that shifting from si to sj does

not change the color of ej where ej = rsj , so the resulting coloring will not be a proper

coloring. In our proof we will treat ej separately to avoid this problem. The following result

regarding a Vizing fan can be found in [9, Theorem 2.1].

Lemma 2.1. Let G be a class 2 graph, e = rs0 be a critical edge and φ ∈ C∆(G− e). If F

is a Vizing fan w.r.t. e and φ, then V (F ) is elementary.

Note that e0 may not be e in a linear sequence, but a linear sequence with e0 = e

is also a Vizing fan at r. Moreover, for any si ∈ V (F ) with i ∈ [p], the Vizing fan

F = (r, e0, s0, e1, s1, . . . , ep, sp) contains a linear sequence at r from s0 to si. A linear

sequence at r with φ(e0) = τ is called a τ -sequence. In our proof we will add some linear

sequences not contained in a Vizing fan to enlarge it. We say a Vizing fan F at r is maximal

w.r.t. e and φ if there is no Vizing fan at r w.r.t. e and φ containing F as a proper sub-

sequence. We say a Vizing fan F at r is maximum w.r.t. e if |V (F )| is maximum among

all Vizing fans at r w.r.t. e over all colorings φ ∈ C∆(G − e). Clearly if F is maximum at

r w.r.t. e, it is also maximal w.r.t. e and the coloring φ where F is obtained. Let F be a

maximal Vizing fan at r w.r.t. e and φ. A τ -sequence L at r is said to be outside of F if

V (L)∩V (F ) = {r}. For an integer t ≥ 0, we say a τ -sequence L = (r, f0, v0, f1, v1, . . . , ft, vt)

at r outside of F is extremal if vt is the only vertex vj with index 0 ≤ j ≤ t such that either

φ(vj)∩(∪j−1
i=0φ(vi)∪φ(V (F ))∪{τ}) ̸= ∅ or φ(vj) = ∅. Since a τ -sequence cannot be enlarged
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forever, it must be a subsequence of some extremal τ -sequence. Moreover, exactly one of

the followings must happen for an extremal τ -sequence L:

(a) V (L) ∪ V (F ) is elementary and {τ} = φ(vt). In this case we say L is of Type A.

(b) φ(vt) ∩ φ(V (F )) ̸= ∅. In this case we say L is of Type B.

(c) φ(vi) ∩ φ(V (F )) = ∅ for all 0 ≤ i ≤ t, and V (L) is not elementary. In this case there

exists a color α ∈ (φ(vi) ∩ φ(vj))− φ(V (F )) for some 0 ≤ i ≤ j ≤ t and we say L is of

Type C.

(d) φ(vt) = ∅ and V (L) ∪ V (F ) is elementary. In this case d(vt) = ∆ and we say L is of

Type D.

See the following figure 1 for examples of 4 types of extremal τ -sequences, where a dash

line represents a color missing at a vertex.

Figure 1: Examples of τ -sequences

From now on we will not mention “at r” when we refer to a Vizing fan or a linear

sequence if it creates no confusion. Additionally, when we refer to a linear sequence outside

of F , we always mean an extremal one unless specified otherwise.
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Let G be a class 2 graph, e = rs0 be a critical edge and φ ∈ C∆(G − e). Let F =

(r, e0, s0, e1, s1, . . . , ep, sp) be a Vizing fan centered at r under the coloring φ. Clearly a

linear sequence L at r from s0 to sq with q ∈ [p] defines a linear order ⪯L on vertices in L.

By sa ≺L sb, we mean sa ⪯L sb and sa ̸= sb. Since V (F ) is elementary by Lemma 2.1, it’s

easy to see that all the linear sequences at r starting from s0 to sq for some q ∈ [p] together

induce a partial order ⪯F by α ⪯F α for the every color α ∈ φ(V (F )), and α ⪯F β for

two different colors α, β ∈ φ(V (F )) if there exists a linear sequence L at r starting from

s0 to some sq with q ∈ [p] such that an edge e′ ∈ E(L) with φ(e′) = α comes before a

vertex v ∈ V (L) with β ∈ φ(v) along L. Moreover, for any color α ∈ φ(V (F )), there is a

unique vertex v ∈ V (F ) such that α ∈ φ(v) since V (F ) is elementary. Let vF (α) denote

such vertex v. We have the following lemma as a direct consequence of Lemma 2.1.

Lemma 2.2. Let G be a class 2 graph, e = rs0 be a critical edge and φ ∈ C∆(G− e). Let

F be a maximal Vizing fan at r w.r.t. e and φ. Then for any two colors α, β ∈ φ(V (F )),

we have the following statements:

(a) If vF (α) = r, then vF (α) and vF (β) are (α, β)-linked.

(b) If α and β are incomparable along ⪯F , then vF (α) and vF (β) are (α, β)-linked.

(c) If α ⪯F β and vF (α) and vF (β) are not (α, β)-linked, then PvF (β)(α, β, φ) must contain

the vertex r.

(d) If v ∈ V (F ) and v ̸= r, then F contains at least |φ(v)| many ∆-degree neighbors of r.

Proof. To prove (a) we assume vF (α) = r. Note that if vF (β) = r, we are done by definition.

So we may assume that vF (β) ̸= r. If vF (α) and vF (β) are not (α, β)-linked, then by β → α

at vF (β), we have a non-elementary Vizing fan F ′ from r to vF (β) contradicting Lemma 2.1.

Thus (a) holds.

For (b) we assume that α and β are incomparable along ⪯F . Note that there are two

linear sequences L1 and L2 at r from s0 to vF (α) and vF (β), respectively. Since α and

β are incomparable along ⪯F , and vF (α) and vF (β) are the last vertices for L1 and L2

respectively, L1 and L2 do not contain any edge colored by α or β. Now by β → α at

vF (β), we have a new coloring and we denote the new coloring by φ1. Since no edge in L1

and L2 is colored by either α or β under φ, L1 and L2 are still linear sequences under φ1.

Let F ′ be a maximal Vizing fan w.r.t. e and φ1. Then L1 and L2 are all contained in F ′,

giving a non-elementary Vizing fan contradicting Lemma 2.1.

If (c) fails, since α ⪯F β, we can just do β → α at vF (β) to get a non-elementary Vizing

fan contradicting Lemma 2.1.
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To see (d), we assume α ∈ φ(v) with v ∈ V (F ) and v ̸= r. Since V (F ) is elementary

by Lemma 2.1 and F is maximal, every color α in φ(v) induces at least one maximal

α-sequence Lα ending with a unique ∆-degree vertex in F , giving at least |φ(v)| many

∆-degree neighbors of r in F .

The following Vizing’s Adjacency Lemma is a direct consequence of Lemmma 2.2(d).

Lemma 2.3 (Vizing’s Adjacency Lemma(VAL)). Let G be a class 2 graph with maximum

degree ∆. If e = xy is a critical edge of G, then x is adjacent to at least ∆ − d(y) + 1

∆-vertices from V (G) \ {y}.

Let G be a class 2 graph, e = rs0 be a critical edge and F = (r, e0, s0, e1, s1, . . . , ep, sp)

be a maximum Vizing fan at r w.r.t. e, and let φ ∈ C∆(G − e) be the coloring where F

is obtained. We call a color β a stopping color at r if r has a ∆-degree neighbor x with

φ(rx) = β. Let K be the set of all stopping colors at r. Since G is class 2, e is critical, and F

is maximum and elementary, F must contain some ∆-degree neighbors of r. So there exists

a vertex sh ∈ V (F ) and stopping color β such that β ∈ φ(sh). We let KF = K − φ(V (F ))

and call colors in KF stopping colors outside of F . By a slightly abuse of notation, in this

paper, a union of two sequences A and B, denoted by A ∪ B, is the sequence obtained by

joining the sequence B to A after the last element of A. We now fix a vertex sh ∈ V (F )

with a stopping color β ∈ φ(sh). Let F ′ be the union of all the φ(rv)-sequences outside

of F , where v is any vertex in the set N<∆(sh) ∩ N(r) with φ(vsh) /∈ KF . Then we call

the sequence F ∪ F ′ an extended Vizing fan w.r.t. F and sh. See figure 2 for an extended

Vizing fan with F ′ being a single type A τ -sequence with φ(vsh) = π, where a dash line

represents a color missing at a vertex. For simplification of notation, we did not indicate

sh in the notation F ′, even though F ′ relies on a fixed vertex sh. The following Lemma 2.4

is a key lemma in our proof and it is a natural generalization of Lemmas 2.1 and 2.2 on

F ∪ F ′. It is worth pointing out that Lemma 2.4 can be easily generalized further along

this direction if we allow F ′ to be the union of all the φ(rv)-sequences outside of F such

that v ∈ N<∆(sh) ∩N(r) with φ(vsh) /∈ KF for every vertex sh having any stopping color

β ∈ φ(sh).

Lemma 2.4. Let G be a class 2 graph, e = rs0 be a critical edge and F = (r, e0, s0, e1,

s1, . . . , ep, sp) be a maximum Vizing fan at r w.r.t. e, and let φ ∈ C∆(G− e) be the coloring

where F is obtained. Let F ∪ F ′ be an extended Vizing fan w.r.t. F and sh ∈ V (F ), where

β is a stopping color with β ∈ φ(sh). Then the following holds.

(a) V (F ∪ F ′) is elementary.

(b) For two colors 1 ∈ φ(r) and γ ∈ φ(F ∪ F ′) − KF , the vertices r and vF∪F ′(γ) are

(1, γ)-linked, where vF∪F ′(γ) is the unique vertex in V (F ∪ F ′) with γ ∈ φ(vF∪F ′(γ)).
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Figure 2: An extended Vizing fan with F ′ being a single type A τ -sequence with φ(vsh) = π

(c) For each color γ ∈ φ(V (F ′)), the vertices sh and vF ′(γ) are (β, γ)-linked, where vF ′(γ)

is the unique vertex in V (F ′) with γ ∈ φ(vF ′(γ)).

(d) Let γ be a color in φ(V (F ′)) ∩ KF and let L = (r, rv0, v0, ..., vt) be a φ(rv0)-sequence

in F ′ such that vF ′(γ) ∈ V (L). If φ(shv0) ̸= 1, then r is (1, γ)-linked to vF ′(γ). If

φ(shv0) = 1, then vF ′(γ) is (ζ, γ)-linked to vF (ζ) for any color ζ ∈ φ(V (F )) ∩K.

The proof of Lemma 2.4 will be given in Section 4. We call a vertex r light if d(r) = ∆

and dG∆
(r) = δ(G∆). The next lemma is the main tool used in the proof of Theorem 1.1.

Lemma 2.5. Let G be a critical class 2 graph with δ(G∆) = k, |V (G)| = n, and ∆ ≥
2
3n + 3k

2 , let r be a light vertex, and let e = rs be a critical edge with d(s) ≤ ∆ − 1. Let

φ ∈ C∆(G − e) be a coloring under which there is a maximum Vizing fan centered at r.

Then all vertices of degree at least ∆− k + 1 form an elementary set under φ.
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3 Proof of Theorem 1.1

Proof. Let G be a ∆-critical graph of order n and k ≥ 2 be a positive integer. Furthermore,

we assume ∆ ≥ 2
3n + 3k

2 with δ(G∆) ≤ k. Since ∆ ≥ 2
3n + 3k

2 ≥ 2
3n + 3δ(G∆)

2 , we will just

take δ(G∆) = k in this proof. Let r be a light vertex of G and s be a neighbor of r with

d(s) ≤ ∆ − 1. Then the edge rs is a critical edge. Let φ be a ∆-edge-coloring of G − rs

and F be a maximum Vizing fan centered at r. We first claim that if V (G) is elementary

under φ, then G is overfull. Indeed, if G is elementary, then each color can only be missing

at most once for vertices in V (G). Since r has at least one missing color, n must be odd as

any color missing at r induces a perfect matching of G− r. Therefore, each color must be

missing exactly once in G as n is odd. Thus G has exactly (n−1
2 )∆ + 1 many edges since

we have ∆ many color classes and the edge rs is uncolored. So G is overfull as we claimed.

Now we shall show that V (G) is elementary to confirm that G is overfull in the reminder

of this section. By Lemma 2.5, all vertices with degree at least ∆−k+1 form an elementary

set, so we are done if there’s no vertex of degree less than ∆ − k + 1. Thus we assume

otherwise that there is a vertex x with d(x) ≤ ∆− k. Since |N∆(r)| = k, all the vertices in

N(r) have degree at least ∆ − k + 1 by applying Lemma 2.3(VAL) to the edge xr. Since

d(x) ≤ ∆− k, we have x /∈ N(r).

We claim that d(x) ≥ n
3 + 2k. Since every edge in G is critical, x is adjacent to

at least one maximum degree vertex in G by Lemma 2.3(VAL). Let u be a maximum

degree vertex with ux ∈ E(G). Then u ̸= r as x /∈ N(r). Since d(u) = ∆, we have

|N(u) ∩N(r)| ≥ d(u) + d(r)− |N(u) ∪N(r)| ≥ ∆+∆− n ≥ 4n
3 + 3k − n ≥ n

3 + 3k. Since

|N∆(r)| = k, we have |N<∆(u)| ≥ n
3 + 2k, and therefore |N∆(u)| ≤ ∆− n

3 − 2k. Since ux is

a critical edge, we have |N∆(u)| ≥ ∆− d(x)+ 1. So d(x) ≥ n
3 +2k+1 ≥ n

3 +2k as claimed.

Since N∆(r) = k, we have d(v) ≥ ∆ − k + 1 for each vertex v ∈ N<∆(r) by by

Lemma 2.3(VAL). Recall that by Lemma 2.5, all vertices with degree at least ∆−k+1 form

an elementary set. As s ∈ N<∆(r), we have |φ(N<∆(r))| ≥ |N<∆(r)|+1 ≥ ∆−k+1. Since

d(x) ≥ n
3 +2k, we have |N(r)∩N(x)| ≥ ∆+ n

3 +2k−n ≥ 7k
2 . Because |N∆(r)| = k, it follows

that |N<∆(r)∩N<∆(x)| ≥ 5k
2 . Since |φ(N<∆(r))| ≥ ∆−k+1 and all edges connecting x to

vertices in N<∆(r)∩N<∆(x) are colored differently, there is a vertex v ∈ N<∆(r)∩N<∆(x)

such that φ(vx) = β ∈ φ(w) where w ∈ N<∆(r). Since d(x) ≤ ∆ − k, |φ(x)| ≥ k. Since

|φ(N<∆(r))| ≥ ∆−k+1, |φ(x)∩φ(N<∆(r))| ≥ 1. Thus, there exists α ∈ φ(x)∩φ(u′) where

u′ ∈ N<∆(r). So d(u′) ≥ ∆ − k + 1. Let 1 ∈ φ(r). We claim that u′ is (1, α)-linked to r.

Otherwise, we have u′ /∈ V (F ) by Lemma 2.2(a). Thus F stays as a maximum Vizing fan

after 1 → α at u′. However, we have a contradiction to Lemma 2.5 as now 1 ∈ φ(r)∩φ(u′)

and d(u′) ≥ ∆ − k + 1. Thus we have as claimed. Then x is not (1, α)-linked to r, as

x /∈ V (F ) (x /∈ N(r)). Thus after doing α → 1 at x, F stays as a maximum Vizing fan.

Now we let γ ∈ φ(v). Similarly as earlier, we see that v is (1, γ)-linked to r, as otherwise we
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can do γ → 1 at v and reach a contradiction with Lemma 2.5. Hence x is not (1, γ)-linked

to r, as x /∈ V (F ) (x /∈ N(r)). Thus we do 1 → γ at x. Now γ ∈ φ(x)∩φ(v) and we recolor

the edge vx by γ. Note that F stays as a maximum Vizing fan after these two operations.

As a result, we have β ∈ φ(v) ∩ φ(w), a contradiction to Lemma 2.5. Therefore, G has no

vertex of degree less than ∆− k + 1 and V (G) is elementary by Lemma 2.5, as desired.

4 Proof of Lemma 2.4

Proof. LetG be a class 2 graph, e = rs0 be a critical edge and F = (r, e0, s0, e1, s1, . . . , ep, sp)

be a maximum Vizing fan at r w.r.t. e, and let φ ∈ C∆(G− e) be the coloring where F is

obtained. Let F ∪ F ′ be an extended Vizing fan as defined earlier using the vertex sh with

0 ≤ h ≤ p. Let 1 ∈ φ(r) and β ∈ φ(sh) ∩K, where K is the set of stopping colors.

We first prove (a). Assume otherwise that there exist α ∈ φ(x1) ∩ φ(x2) with x1, x2 ∈
V (F ∪ F ′). We first assume that α /∈ KF . Since only one of x1, x2 is (1, α)-linked to r, so

we assume that x1 is not (1, α)-linked to r. By Lemma 2.1, x1 /∈ V (F ). By the definition of

F ′, x1 must be a vertex along a τ -sequence L such that φ(rv) = τ for a vertex v in N<∆(r)

and φ(vsh) /∈ KF , where KF is the set of stopping colors outside of F . In this case, we do

α → 1 at x1. Note that φ(vsh) may be changed when we did α → 1 at x1, but we still

have φ(vsh) /∈ KF because 1, α /∈ KF . Moreover, if L contains an edge colored by α and

a vertex x3 ≺L x1 with α ∈ φ(x3) such that x1 and x3 are (1, α)-linked, x1 may no longer

belong to the corresponding τ -sequence L after the color switching at x1. Nonetheless, we

can still shift L from v to x3 and recolor rx3 by 1 if the earlier mentioned x3 exists, and we

shift L from v to x1 and recolor rx1 by 1 if otherwise. Now τ ∈ φ(v) ∩ φ(r) and F is still

a Vizing fan. Recall that β ∈ φ(sh) ∩K. Let γ = φ(vsh). So γ /∈ KF . By Lemma 2.2(a),

sh and r are (τ, β)-linked. Then we do τ → β at v. As a result, β ∈ φ(sh) ∩ φ(v) and the

edge vsh is still colored by γ. If γ /∈ φ(F ), then we do β → γ at sh. Recall that β ∈ KF

gives us a ∆-degree neighbor of r, say w. Now since γ /∈ KF , under the new coloring a

γ-sequence of at least two vertices can be added to F with removing w from F , resulting in

a larger Vizing fan, which is a contradiction to F being maximum w.r.t. e. Thus we may

assume γ ∈ φ(si) for a vertex si ∈ V (F ). Now we recolor the edge vsh by β, and γ becomes

a missing color at sh. Since β ∈ K, we then have a non-elementary Vizing fan containing

both sh and si, a contradiction to Lemma 2.1.

Now we assume that α ∈ KF . Recall that β ∈ φ(sh)∩K. Similarly as earlier, we assume

that x1 is not (α, β)-linked to sh, and x1 is added to F ′ through a τ -sequence at r starting

from rv. We do α → β at x1. Since x1 is not (α, β)-linked to sh and α, β ∈ K, this process

does not change the colors on vsh and rv, and x1 still belongs to a τ -sequence at r starting
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from rv. Since sh is (1, β)-linked to r, we can do β → 1 at x1 and this process still keeps

the colors of vsh and rv, and x1 still belongs to a τ -sequence at r starting from rv. We then

have 1 ∈ φ(x1) ∩ φ(r) and returned to the previous case of α /∈ KF with 1 in place of α.

To see (b), we just do γ → 1 at vF∪F ′(γ) if (b) fails. Since vF∪F ′(γ) and r are not

(1, γ)-linked, this Kempe change does not involve any edge of F ∪F ′. Although this Kempe

change may change the color on some edge vsh where a φ(rv)-sequence is contained in

F ′ by the definition of F ′, since 1, γ /∈ KF , we still have that the color on the edge rv is

not contained in KF , and as a result, vF∪F ′(γ) now belongs to a non-elementary extended

Vizing fan (it may be different from F ∪F ′, but it still contains the vertex vF∪F ′(γ)), giving

a contradiction to (a).

The proof of (c) is similar to the proof of (b), as we can do γ → β at vF ′(γ) if (c)

fails. Since β ∈ K, β ∈ φ(sh) and vF ′(γ) is not (β, γ)-linked to sh, vF ′(γ) now belongs to a

non-elementary extended Vizing fan (again it may be different from F ∪F ′), a contradiction

to (a).

If the first part of (d) fails, then by γ → 1 at vF ′(γ), we have a non-elementary extended

Vizing fan containing the vertex vF ′(γ), a contradiction to (a). If the second part of (d)

fails, then similarly we do γ → ζ at vF ′(γ) and get a non-elementary extended Vizing fan

containing the vertex vF ′(γ). Note that in both parts after the operation on vF ′(γ), the

extended Vizing fan may be different from F ∪F ′, but it will still contain the vertex vF ′(γ).

5 Proof of Lemma 2.5

Proof. Let G, k, s = s0, r, and the maximum Vizing fan F = (r, e0, s0, e1, s1, . . . , ep, sp) be

as defined in Lemma 2.5 under the coloring φ ∈ C∆(G − e0). Recall that K is the set of

stopping colors at r and KF = K−φ(V (F )) is the set of stopping colors outside of F . Then

|K| = k as r has core degree k. We denote |KF | by k′. Let 1 ∈ φ(r). To prove Lemma 2.5,

we assume otherwise that there are two vertices x, x′ with degree at least ∆ − k + 1 such

that α ∈ φ(x)∩φ(x′). Since r is (1, α)-linked to exactly one vertex, we may assume that x

is not (1, α)-linked to r. By Lemma 2.1, x /∈ V (F ). Thus we do α → 1 at x. As a result,

1 ∈ φ(x). Assume β ∈ K ∩ φ(sh) for some h with 0 ≤ h ≤ p. Let F ∪ F ′ be an extended

Vizing fan defined with sh where F ′ is a collection of all the τ -sequences outside of F such

that τ = φ(rv) and v ∈ N<∆(sh) ∩ N(r) with φ(vsh) /∈ KF . Since |N∆(r)| = k and rs is

critical, all neighbors of r have degree at least ∆ − k + 1 by Theorem 2.3(VAL). Thus all

vertices in V (F ∪ F ′) have degree at least ∆− k + 1. We have the following claim.
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Claim 1. |N<∆(x) ∩ V (F ∪ F ′)| ≥ k + 1.

By Lemma 2.2(d), F contains at least |φ(sh)| many ∆-neighbors of r. Thus we have

k′ ≤ k − |φ(sh)|. Since |φ(sh)| = ∆− dG(sh) when h > 0 and |φ(sh)| = ∆− dG(sh) + 1

when h = 0, we have dG(sh)≥ ∆−|φ(sh)|, and therefore dG(sh)≥ ∆− (k−k′)= ∆−k+k′.

So |N(r) ∩N(sh)|≥ dG(r) + dG(sh)− |V (G)|= ∆+∆− k + k′ − n≥ n/3 + 2k + k′. Since

there are at most k′ neighbors of sh that are joined to sh by colors in KF , we have

|V (F ∪ F ′)| ≥ n/3 + 2k. Because r has exactly k many ∆-neighbors, F ∪ F ′ has at least

n/3 + 2k − k = n/3 + k many vertices with degree less than ∆. As dG(x) ≥ ∆− k + 1

≥ 2n/3 + k/2 + 1, we have |N<∆(x) ∩ V (F ∪ F ′)| ≥ 2n/3 + k/2 + 1 + n/3 + 2k − n

≥ k + 1, as desired.

By considering the colors on edges joining x and vertices in N<∆(x) ∩ V (F ∪ F ′), we have

the following three cases.

Case 1. There is a vertex u ∈ N<∆(x) ∩ V (F ∪ F ′) such that τ = φ(xu) ∈ φ(V (F ∪ F ′)).

We first assume that u ∈ V (F ). Now if τ ∈ φ(V (F )) and there is a color γ ∈ φ(u) such

that γ and τ are incomparable along ⪯F , we do 1 → γ at x. Since u is (1, γ)-linked to r

by Lemma 2.2(a) before the operation, we see that γ is missing at both ends of the edge

ux colored by τ after the operation. So u is (γ, τ)-linked to x in the resulting coloring.

However, this is a contradiction, as u should be (γ, τ)-linked to the vertex in F with

missing color τ by Lemma 2.2(b) and the fact that γ and τ are incomparable along ⪯F . If

τ ∈ φ(V (F )) and there is a color γ ∈ φ(u) such that τ ≺F γ along ⪯F , we similarly do

1 → γ at x and get a contradiction with Lemma 2.2(c). In the case τ ∈ φ(V (F )) and there

is a color γ ∈ φ(u) such that γ ≺F τ along ⪯F , we simply do a shifting from rs to rvF (τ)

and uncolor the edge rvF (τ). As a result, there exists a color in φ(u) that is incomparable

with τ and we reach an earlier case.

We now consider the case that τ ∈ φ(V (F ′)). If τ /∈ KF , then we do 1 → τ at x. Since r is

(1, τ)-linked to vF ′(τ) by Lemma 2.4(b), and the set {s ∈ N(sh) : φ(ssh) /∈ KF } stays the

same, it is easy to see that F ∪ F ′ is still an extended Vizing fan. Similarly by

Lemma 2.4(c), sh is (β, τ)-linked to vF ′(τ). We then do τ → β at x. Note that F is still a

Vizing fan under this new coloring. So by β → 1 at x, we reach the earlier case of

φ(xu) ∈ φ(V (F )), because sh is (1, β)-linked to r. For readers’ convenience, in the

remainder of this paper we will only give operations performed without repeating each

time in details Lemmas 2.2 and 2.4, the set {s ∈ N(sh) : φ(ssh) /∈ KF }, and the resulting

extended Vizing fan. Now if τ ∈ KF , we do 1 → β → τ at x. Since |φ(s0)| ≥ 2, by

Lemma 2.2(d), there exists a color ζ ∈ φ(V (F )) ∩K with ζ ̸= β. If vF ′(τ) is obtained

through a linear sequence with first vertex v joined to sh by the color 1, we do τ → ζ → 1

at x following Lemma 2.4(d) and Lemma 2.2(a), where we reach the previous case of
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φ(xu) ∈ φ(V (F )). Note that here φ(vsh) might be changed to ζ and the set

{s ∈ N(sh) : φ(ssh) /∈ KF } might change, but u stays in an extended Vizing fan in the

new coloring. If vF ′(τ) is obtained through a linear sequence with first vertex v joined to

sh by a color other than 1, we do τ → 1 at x following Lemma 2.4(d), where we reach the

previous case of φ(xu) ∈ φ(V (F )). Here the set {s ∈ N(sh) : φ(ssh) /∈ KF } might change,

but u stays in an extended Vizing fan in the new coloring.

We then assume that u ∈ V (F ′). Let γ be a color in φ(u). If γ ∈ KF , we can just do

1 → β → γ → τ at x and get a non-elementary extended Vizing fan, a contradiction to

Lemma 2.4(a). Therefore, we may assume γ /∈ KF . If vF ′(τ) and u do not belong to the

same linear sequence L added to F ′ with u ≺L vF ′(τ), then we have a non-elementary

extended Vizing fan by 1 → γ → τ at x. Thus we may assume vF ′(τ) and u are both

belong to a linear sequence L added to F ′ with u ≺L vF ′(τ). Let the first vertex of L be v.

Since |φ(s0)| ≥ 2, by Lemma 2.2(d), there exists a color ζ ∈ φ(V (F )) ∩K with ζ ̸= β. We

first do 1 → β → τ at x. Now similarly as before, if φ(vsh) = 1, we then do τ → ζ → 1 at

x following Lemma 2.4(d) to reach the previous case as φ(xu) = β ∈ φ(V (F )). If

φ(vsh) ̸= 1, we then do τ → 1 at x following Lemma 2.4(d) to reach the previous case as

φ(xu) = β ∈ φ(V (F )).

Case 2. There is a vertex u ∈ N<∆(x) ∩ V (F ∪ F ′) such that τ = φ(xu) /∈ φ(V (F ∪ F ′))

and not all the τ -sequence outside of F is of Type D.

By the assumption of this case, there is a τ -sequence L outside of F which is of Type A,

B, or C. Let γ ∈ φ(u). We first assume that u ∈ V (F ). Now if L is of Type A or C, then

by doing 1 → γ → τ at x, we have a non-elementary Vizing fan contradicting Lemma 2.5.

If L is of Type B with φ(V (L)) ∩ {1, γ} ≠ ∅, then by doing 1 → γ → τ at x, we still have

φ(V (L)) ∩ {1, γ} ≠ ∅, reaching a contradiction by resulting either a larger Vizing fan or a

non-elementary Vizing fan. Now the remaining case is that L is of Type B, and there

exists a color η ∈ φ(V (F )) ∩ φ(V (L)) with η /∈ {1, γ}. If u ⪯F vF (η) along ⪯F does not

happen, then by doing 1 → γ → τ at x, we have a non-elementary Vizing fan contradicting

Lemma 2.5. If u ⪯F vF (η) along ⪯F , then we simply do a shifting from rs to rvF (η) and

uncolor the edge rvF (η), reaching the earlier case of u ⪯F vF (η) not happening.

We then assume u ∈ V (F ′). We first consider the case that L is not of Type B with

{1} = φ(V (L)) ∩ φ(V (F )), or L is of Type B with {1} = φ(V (L)) ∩ φ(V (F )) and

x ∈ V (L). If γ /∈ KF , we just do 1 → γ → τ at x to get a non-elementary extended Vizing

fan, a contradiction to Lemma 2.4(a). Therefore, we have γ ∈ KF . If L is not of Type B

with {β} = φ(V (L)) ∩ φ(V (F )), we have a non-elementary extended Vizing fan by

1 → β → γ → τ at x, a contradiction to Lemma 2.2(a). Thus we may assume L is of Type

B with {β} = φ(V (L)) ∩ φ(V (F )). Suppose that u is added to F ′ by a linear sequence L′

with first vertex v. Again since |φ(s0)| ≥ 2, by Lemma 2.2(d), there exists a color
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ζ ∈ φ(V (F )) ∩K with ζ ̸= β. Now if φ(vsh) ̸= 1, we do 1 → γ → τ at x to get a

non-elementary extended Vizing fan, and if φ(vsh) = 1, we do 1 → ζ → γ → τ at x to get

a non-elementary extended Vizing fan, both give contradictions to Lemma 2.2(a).

Thus we can assume L is of Type B with {1} = φ(V (L)) ∩ φ(V (F )) and there is a vertex

z ∈ V (L) with 1 ∈ φ(z) and z ̸= x. Clearly τ /∈ KF as L is of Type B. By the definition of

extremal linear sequences outside of F , z is the last vertex of L. Let the first vertex of L

be w. Note that here z and w could be the same vertex. Clearly F ′ and L do not share

common vertices, as otherwise z ∈ V (F ′) and we have a non-elementary extended Vizing

fan. Recall that γ ∈ φ(u). Now we do 1 → β at both x and z following Lemma 2.2(a). As

a result, β ∈ φ(z) ∩ φ(x). Note that φ(rw) = τ and d(w) < ∆, so τ /∈ KF . Therefore, sh

and r must be (β, τ)-linked, as otherwise we have a larger Vizing fan by interchanging β

and τ along Cr(β, τ). Now if sh and x are (β, τ)-linked, we can do β → τ at z and then do

β → 1 at x, reaching the earlier case that L is not of Type B. We then assume sh and z

are (β, τ)-linked. In this case, we first do β → τ at x and then do β → 1 at z. Now

φ(ux) = β, τ ∈ φ(x), and 1 ∈ φ(z). We then do a shift along L from w to z, and color the

edge rz by 1. For reader’s convenience, we switch labels for color 1 and τ to meet the

notations we used earlier. After the switching of 1 and τ , we now still have

1 ∈ φ(r) ∩ φ(x), γ ∈ φ(u), φ(ux) = β, and F ∪ F ′ is still an extended Vizing fan as

τ /∈ KF , which returns to Case 1. Finally we may assume that sh is (β, τ)-linked to neither

z nor x. We then do β → τ at both z and x. As a result, τ ∈ φ(x) ∩ φ(z) and φ(ux) = β.

Recall that τ /∈ KF . If r is (1, τ)-linked to z, then by doing τ → 1 at x, we reach Case 1.

If r is (1, τ)-linked to x, then by doing τ → 1 at z, we reach the earlier case where we shift

along L from w to z, and color the edge rz by 1. If r is (1, τ)-linked to neither z nor x,

then by doing τ → 1 at both z and x, we reach Case 1. This finishes Case 2.

Case 3. All the τ -sequence outside of F is of Type D, where τ = φ(xu) /∈ φ(V (F ) ∪
V (F ′)) and u ∈ N<∆(x) ∩ V (F ∪ F ′).

Since |N<∆(x) ∩ V (F ∪ F ′)| ≥ k + 1 by Claim 1 and |KF | < k, there must exist two

vertices u and u∗ in N<∆(x) ∩ V (F ∪ F ′) such that τ = φ(xu) /∈ φ(V (F ) ∪ V (F ′)) and

τ∗ = φ(xu∗) /∈ φ(V (F ) ∪ V (F ′)) where the τ -sequence L1 and τ∗-sequence L2 are both of

Type D ending with the same stopping color of F in KF .

We claim that one of L1 and L2 is a sub-sequence of the other one. Otherwise, since L1

and L2 are of Type D both ending with the same stopping color, there exists

θ ∈ φ(v1) ∩ φ(v2) such that v1 ∈ V (L1), v2 ∈ V (L2), and v1 ̸= v2. Because L1 and L2 are

of Type D, θ /∈ φ(V (F )). Since β ∈ φ(sh), at most one of v1 and v2 is (β, θ)-linked to sh.

Thus we may assume that v1 is not (β, θ)-linked to sh. Note that if θ /∈ KF , r and sh must

be (β, θ)-linked, as otherwise by switching β and θ along Cr(β, θ, φ), we would have a

larger Vizing fan. Now by θ → β at s1, we have reached Case 2 as the sub-sequence of L1
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ending at v1 is of Type B and this operation will not change the set

{s ∈ N(sh) : φ(ssh) /∈ KF }. Thus we have as claimed.

Now by the above claim, we may assume L2 is a sub-sequence of L1, τ
∗ ∈ φ(z) with

z ∈ V (L1), and τ /∈ KF . We are going to consider the following three cases depending on

which one of u and u∗ is in V (F ′).

We first assume that both u and u∗ are in V (F ). Similarly as earlier, we may assume that

there exist γ ∈ φ(u) and γ∗ ∈ φ(u∗) such that γ and γ∗ are incomparable along ⪯F .

Otherwise, say γ ⪯F γ∗, then by shifting from s0 to vF (γ
∗) and uncolor the edge rvF (γ

∗),

we have as desired. Now we first do 1 → γ → τ at x following Lemma 2.2(a) and consider

a maximal Vizing fan F ∗ under this new coloring φ. Since now τ ∈ φ(u), and γ and γ∗

were incomparable along ⪯F earlier, we have u, u∗, z ∈ V (F ∗), τ ∈ φ(u) ∩ φ(x), τ∗ ∈ φ(z),

φ(xu∗) = τ∗, and τ∗ and γ∗ are incomparable along ⪯F ∗ . Following Lemma 2.2(a), we can

do τ → 1 → γ∗ at x. As a result, F ∗ is still a Vizing fan and now u∗ and x are

(γ∗, τ∗)-linked, a contradiction to Lemma 2.2(b).

We then assume that u ∈ V (F ′) and u∗ ∈ V (F ), or both u, u∗ ∈ V (F ′) but u and u∗ do

not satisfy u ⪯L∗ u∗ for a linear sequence L∗ in F ′. Note that {γ, γ∗} ∩ {τ, τ∗} = ∅ as

τ = φ(xu) /∈ φ(V (F ) ∪ V (F ′)) and τ∗ = φ(xu∗) /∈ φ(V (F ) ∪ V (F ′)). In the case that

γ /∈ KF , we do 1 → γ → τ at x following Lemma 2.4(b), and in the case that γ ∈ KF , we

do 1 → β → γ → τ at x following Lemma 2.2(b) and Lemma 2.4(c). Note that the set

{s ∈ N(sh) : φ(ssh) /∈ KF } does not change after the above operations and τ ∈ φ(u) now.

Thus if γ was in φ(V (L1)) and γ was changed to 1 or β by the above operations in

φ(V (L1)), we then have a non-elementary extended Vizing fan contradicting

Lemma 2.4(a). Otherwise, since L2 is a sub-sequence of L1, τ
∗ ∈ φ(z) with z ∈ V (L1) and

u ⪯L∗ u∗ is not satisfied for any L∗ in F ′, the new extended Vizing fan will contain z, u,

u∗ while τ∗ ∈ φ(z), τ ∈ φ(x) and φ(u∗x) = τ∗. Now since τ /∈ KF , we just do τ → 1 at x

following Lemma 2.4(b) to reach Case 1 as φ(u∗x) = τ∗ ∈ φ(z).

Finally we assume that u∗ ∈ V (F ′) and u ∈ V (F ), or both u, u∗ ∈ V (F ′) but u and u∗ do

not satisfy u∗ ⪯L∗ u for a linear sequence L∗ in F ′. Note that {γ, γ∗} ∩ {τ, τ∗} = ∅ as

τ = φ(xu) /∈ φ(V (F ) ∪ V (F ′)) and τ∗ = φ(xu∗) /∈ φ(V (F ) ∪ V (F ′)). Similar as before, in

the case that γ∗ /∈ KF , we do 1 → γ∗ → τ∗ at x following Lemma 2.4(b), and in the case

that γ∗ ∈ KF , we do 1 → β → γ∗ → τ∗ at x following Lemma 2.2(b) and Lemma 2.4(c).

Note that the set {s ∈ N(sh) : φ(ssh) /∈ KF } does not change after the above operations,

and τ∗ ∈ φ(u∗) and τ∗ ∈ φ(x). Moreover, we now have τ∗ ∈ φ(u∗), τ∗ ∈ φ(z),

φ(u∗x) = γ∗, and vertices u, u∗ and the sub-sequence of L1 after z is contained in an

extended Vizing fan after the above operations. Thus if γ∗ was a missing color in the

sub-sequence of L1 after z and γ∗ was changed to 1 or β by the above operations as a

missing color in the sub-sequence of L1, we then have a non-elementary extended Vizing
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fan contradicting Lemma 2.4(a). If γ∗ was a missing color in the sub-sequence of L1 until

z and γ∗ was changed to 1 or β by the above operations as a missing color in the

sub-sequence of L1, we then do τ∗ → 1 at x when τ∗ /∈ KF and τ∗ → β → 1 at x when

τ∗ ∈ KF . Now 1 ∈ φ(x), τ∗ ∈ φ(u), φ(xu) = τ , u and u∗ are in an extended Vizing fan

while there is τ -sequence of either Type A or B, reaching Case 1. If the above two

possibilities did not happen, then we still have τ∗ ∈ φ(u∗) ∩ φ(z) ∩ φ(x), τ = φ(ux), u and

u∗ are still in an extended Vizing fan, and the τ -sequence L1 stays the same containing

the vertex z. Now if τ∗ /∈ KF , we do τ∗ → 1 at both x and z following Lemma 2.4(b) to

reach Case 1, as now there is a τ -sequence of Type B. In the case that τ∗ ∈ KF , we do

τ∗ → β → 1 at both x and z following Lemma 2.4(c) and Lemma 2.2(b) to reach Case 1,

as now there is a τ -sequence of Type B.
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